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(57) ABSTRACT

A computing device to automatically cluster a dataset is pro-
vided. Data that includes a plurality of observations with a
plurality of data points defined for each observation is
received. Each data point of the plurality of data points is
associated with a variable to define a plurality of variables. A
number of clusters into which to segment the received data is
repeatedly selected by repeatedly executing a clustering algo-
rithm with the received data. A plurality of sets of clusters is
defined based on the repeated execution of the clustering
algorithm that resulted in the selected number of clusters. A
plurality of composite clusters is defined based on the defined
plurality of sets of clusters. The plurality of observations is
assigned to the defined plurality of composite clusters using
the plurality of data points defined for each observation.
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COMPUTERIZED CLUSTER ANALYSIS
FRAMEWORK FOR DECORRELATED
CLUSTER IDENTIFICATION IN DATASETS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application claims the benefit of 35 U.S.C.
§119(e) to U.S. Provisional Patent Application No. 61/951,
262 filed on Mar. 11, 2014, and to U.S. Provisional Patent
Application No. 61/988,980 filed on May 6, 2014, the entire
contents of which are hereby incorporated by reference.

BACKGROUND

Given a data matrix X of size n by p, clustering assigns the
observations (rows of X) to clusters, or groups based on some
or all of the data variables (columns of X). Clustering is a
cornerstone of business intelligence, with wide-ranging
applications such as market segmentation and fraud detec-
tion. Machine learning is a branch of artificial intelligence
that is concerned with building systems that require minimal
human intervention in order to learn from data.

SUMMARY

In an example embodiment, a method of automatically
clustering a dataset is provided. Data that includes a plurality
of'observations with a plurality of data points defined for each
observation is received. Each data point of the plurality of
data points is associated with a variable to define a plurality of
variables. A number of clusters into which to segment the
received data is repeatedly selected by repeatedly executing a
clustering algorithm with the received data. A plurality of sets
of clusters is defined based on the repeated execution of the
clustering algorithm that resulted in the selected number of
clusters. A plurality of composite clusters is defined based on
the defined plurality of sets of clusters. The plurality of obser-
vations is assigned to the defined plurality of composite clus-
ters using the plurality of data points defined for each obser-
vation.

In another example embodiment, a computer-readable
medium is provided having stored thereon computer-read-
able instructions that, when executed by a computing device,
cause the computing device to perform the method of auto-
matically clustering a dataset.

In yet another example embodiment, a computing device is
provided. The system includes, but is not limited to, a pro-
cessor and a computer-readable medium operably coupled to
the processor. The computer-readable medium has instruc-
tions stored thereon that, when executed by the computing
device, cause the computing device to perform the method of
automatically clustering a dataset.

Other principal features of the disclosed subject matter will
become apparent to those skilled in the art upon review of the
following drawings, the detailed description, and the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Tlustrative embodiments of the disclosed subject matter
will hereafter be described referring to the accompanying
drawings, wherein like numerals denote like elements.

FIG. 1 depicts a block diagram of a data transformation
device in accordance with an illustrative embodiment.
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FIG. 2 depicts a flow diagram illustrating examples of
operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIG. 3 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIGS. 4-8 depict an undirected graph including a plurality
of subgraphs in accordance with an illustrative embodiment.

FIG. 9 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIG. 10 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIG. 11 depicts a histogram showing a distribution of a
number of clusters that were repeatedly determined in accor-
dance with an illustrative embodiment.

FIG. 12 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIGS. 13 and 14 depict composite centroid location deter-
minations in accordance with an illustrative embodiment.

FIG. 15 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIG. 16 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIG. 17 depicts another flow diagram illustrating examples
of operations performed by the data transformation device of
FIG. 1 in accordance with an illustrative embodiment.

FIG. 18 depicts a block diagram of a cluster determination
system in accordance with an illustrative embodiment.

FIG. 19 depicts a block diagram of a distributed control
device of the cluster determination system of FIG. 18 in
accordance with an illustrative embodiment.

FIG. 20 depicts ablock diagram of a data node device of the
cluster determination system of FIG. 18 in accordance with
an illustrative embodiment.

FIG. 21 depicts an example dataset distributed into three
clusters in accordance with an illustrative embodiment.

FIG. 22 is a graph showing a plot of a gap statistic value
computed as a function of a number of clusters in accordance
with an illustrative embodiment.

FIG. 23 depicts a neural network in accordance with an
illustrative embodiment.

FIG. 24 is a graph of composite clusters in a coordinate
reference frame defined using a neural network in accordance
with an illustrative embodiment.

DETAILED DESCRIPTION

Referring to FIG. 1, a block diagram of a data transforma-
tion device 100 is shown in accordance with an illustrative
embodiment. Data transformation device 100 may include an
input interface 102, an output interface 104, a communication
interface 106, a non-transitory computer-readable medium
108, a processor 110, a cluster data application 122, a data
matrix 124, and cluster data 126. Fewer, different, and/or
additional components may be incorporated into data trans-
formation device 100.

Input interface 102 provides an interface for receiving
information from the user for entry into data transformation
device 100 as understood by those skilled in the art. Input
interface 102 may interface with various input technologies
including, but not limited to, a keyboard 112, a mouse 114, a
microphone 115, a display 116, a track ball, a keypad, one or
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more buttons, etc. to allow the user to enter information into
data transformation device 100 or to make selections pre-
sented in a user interface displayed on the display. The same
interface may support both input interface 102 and output
interface 104. For example, display 116 comprising a touch
screen provides user input and presents output to the user.
Data transformation device 100 may have one or more input
interfaces that use the same or a different input interface
technology. The input interface technology further may be
accessible by data transformation device 100 through com-
munication interface 106.

Output interface 104 provides an interface for outputting
information for review by a user of data transformation device
100. For example, output interface 104 may interface with
various output technologies including, but not limited to,
display 116, a speaker 118, a printer 120, etc. Data transfor-
mation device 100 may have one or more output interfaces
that use the same or a different output interface technology.
The output interface technology further may be accessible by
data transformation device 100 through communication
interface 106.

Communication interface 106 provides an interface for
receiving and transmitting data between devices using vari-
ous protocols, transmission technologies, and media as
understood by those skilled in the art. Communication inter-
face 106 may support communication using various transmis-
sion media that may be wired and/or wireless. Data transfor-
mation device 100 may have one or more communication
interfaces that use the same or a different communication
interface technology. For example, data transformation
device 100 may support communication using an Ethernet
port, a Bluetooth antenna, a telephone jack, a USB port, etc.
Data and messages may be transferred between data transfor-
mation device 100 and/or a distributed control device 130
and/or distributed systems 132 using communication inter-
face 106.

Computer-readable medium 108 is an electronic holding
place or storage for information so the information can be
accessed by processor 110 as understood by those skilled in
the art. Computer-readable medium 108 can include, but is
not limited to, any type of random access memory (RAM),
any type of read only memory (ROM), any type of flash
memory, etc. such as magnetic storage devices (e.g., hard
disk, floppy disk, magnetic strips, . . . ), optical disks (e.g.,
compact disc (CD), digital versatile disc (DVD), . . .), smart
cards, flash memory devices, etc. Data transformation device
100 may have one or more computer-readable media that use
the same or a different memory media technology. For
example, computer-readable medium 108 may include dif-
ferent types of computer-readable media that may be orga-
nized hierarchically to provide efficient access to the data
stored therein as understood by a person of skill in the art. As
an example, a cache may be implemented in a smaller, faster
memory that stores copies of data from the most frequently/
recently accessed main memory locations to reduce an access
latency. Data transformation device 100 also may have one or
more drives that support the loading of a memory media such
as a CD, DVD, an external hard drive, etc. One or more
external hard drives further may be connected to data trans-
formation device 100 using communication interface 106.

Processor 110 executes instructions as understood by those
skilled in the art. The instructions may be carried out by a
special purpose computer, logic circuits, or hardware circuits.
Processor 110 may be implemented in hardware and/or firm-
ware. Processor 110 executes an instruction, meaning it per-
forms/controls the operations called for by that instruction.
The term “execution” is the process of running an application
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or the carrying out of the operation called for by an instruc-
tion. The instructions may be written using one or more
programming language, scripting language, assembly lan-
guage, etc. Processor 110 operably couples with input inter-
face 102, with output interface 104, with communication
interface 106, and with computer-readable medium 108 to
receive, to send, and to process information. Processor 110
may retrieve a set of instructions from a permanent memory
device and copy the instructions in an executable form to a
temporary memory device that is generally some form of
RAM. Data transformation device 100 may include a plural-
ity of processors that use the same or a different processing
technology.

Cluster data application 122 performs operations associ-
ated with creating cluster data 126 from data stored in data
matrix 124. Cluster data application 122 can automatically
select relevant variables from data stored in data matrix 124,
determine a best number of clusters into which to segment the
data stored in data matrix 124, define composite clusters,
assign observations to the defined composite clusters, and
present a visualization of the defined composite clusters. The
created cluster data 126 may be used to perform various data
mining functions and to support various data analysis func-
tions as understood by a person of skill in the art. Some or all
of'the operations described herein may be embodied in cluster
data application 122. The operations may be implemented
using hardware, firmware, software, or any combination of
these methods. Referring to the example embodiment of FI1G.
1, cluster data application 122 is implemented in software
(comprised of computer-readable and/or computer-execut-
able instructions) stored in computer-readable medium 108
and accessible by processor 110 for execution of the instruc-
tions that embody the operations of cluster data application
122. Cluster data application 122 may be written using one or
more programming languages, assembly languages, scripting
languages, etc.

Cluster data application 122 may be implemented as a Web
application. For example, cluster data application 122 may be
configured to receive hypertext transport protocol (HTTP)
responses and to send HTTP requests. The HTTP responses
may include web pages such as hypertext markup language
(HTML) documents and linked objects generated in response
to the HTTP requests. Each web page may be identified by a
uniform resource locator (URL) that includes the location or
address of the computing device that contains the resource to
be accessed in addition to the location of the resource on that
computing device. The type of file or resource depends on the
Internet application protocol such as the file transfer protocol,
HTTP, H.323, etc. The file accessed may be a simple text file,
an image file, an audio file, a video file, an executable, a
common gateway interface application, a Java applet, an
extensible markup language (XML) file, or any other type of
file supported by HTTP.

Data matrix 124 may organized to include a plurality of
rows and one or more columns. The rows of data matrix 124
may be referred to as observations or records and the col-
umns, representing variables, associated with an observation
may be referred to as data points for the observation. Of
course, in an alternative embodiment, data matrix 124 may be
transposed and may be organized in other manners. Data
matrix 124 may be stored in various compressed formats such
as a coordinate format, a compressed sparse column format, a
compressed sparse row format, etc.

The data stored in data matrix 124 may include any type of
content represented in any computer-readable format such as
binary, alphanumeric, numeric, string, markup language, etc.
The content may include textual information, graphical infor-
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mation, image information, audio information, numeric
information, etc. that further may be encoded using various
encoding techniques as understood by a person of skill in the
art. Data matrix 124 may be stored in computer-readable
medium 108 or on one or more other computing devices, such
as on distributed systems 132, and accessed using communi-
cation interface 106. Data matrix 124 may be stored using
various formats as known to those skilled in the art including
a file system, a relational database, a system of tables, a
structured query language database, etc. For example, data
matrix 124 may be stored in a cube distributed across a grid of
computers as understood by a person of skill in the art. As
another example, data matrix 124 may be stored in a multi-
node Hadoop® cluster, as understood by a person of skill in
the art. Apache™ Hadoop® is an open-source software
framework for distributed computing. Apache Spark™, an
engine for large-scale data processing may also be used.

For example, cluster data application 122 may be used to
create cluster data 126 from observations included in data
matrix 124. For example, referring to FIG. 21, ten observa-
tions, Obs |, Obs,, Obs,, . .., Obs,, are shown divided into a
first cluster 2100, a second cluster 2102, and a third cluster
2104, where first cluster 2100 includes Obs,, Obs,, Obs,,
second cluster 2102 includes Obs,, Obs;, Obs,, Obs,, and
third cluster 2104 includes Obs,, Obss, Obs,,. Cluster data
126 is a transformation of data matrix 124 that may be used in
support of various data mining and data analysis tasks. FIG.
21 provides an example visual representation of clusters
though no visual representation is needed as understood by a
person of skill in the art.

Referring to FIG. 2, example operations associated with
cluster data application 122 are described. Additional, fewer,
or different operations may be performed depending on the
embodiment. The order of presentation of the operations of
FIG. 2 is not intended to be limiting. Although some of the
operational flows are presented in sequence, the various
operations may be performed in various repetitions, concur-
rently (in parallel, for example, using threads), and/or in other
orders than those that are illustrated. For example, a user may
execute cluster data application 122, which causes presenta-
tion of a first user interface window, which may include a
plurality of menus and selectors such as drop down menus,
buttons, text boxes, hyperlinks, etc. associated with cluster
data application 122 as understood by a person of skill in the
art. The plurality of menus and selectors may be accessed in
various orders. An indicator may indicate one or more user
selections from a user interface, one or more data entries into
a data field of the user interface, one or more data items read
from computer-readable medium 108 or otherwise defined
with one or more default values, etc. that are received as an
input by cluster data application 122.

In an operation 200, a first indicator is received that indi-
cates data to transform to cluster data 126. For example, the
first indicator indicates a location of data matrix 124. In an
alternative embodiment, the data to cluster may not be select-
able. For example, a most recently created data set may be
used automatically.

The first indicator may be received by cluster data appli-
cation 122, for example, after selection from a user interface
window or after entry by a user into a user interface window.
The first indicator may further indicate that only a portion of
the data stored in data matrix 124 be clustered. For example,
in a large dataset only a subset of the observations may be
used. Firstindicator may indicate a number of observations to
include, a percentage of observations of the entire dataset to
include, etc. A subset may be created from data matrix 124 by
sampling. An example sampling algorithm is uniform sam-
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pling. Other random sampling algorithms may be used. Addi-
tionally, less than all of the columns may be used to determine
the clusters. The first indicator may further indicate the subset
of the columns (variables) to use to determine the clusters.

In an operation 202, the data indicated by the first indicator
is pre-processed, if any pre-processing is to be performed. For
example, cluster data application 122 may provide user
selectable options that perform pre-processing functions. As
understood by a person of skill in the art, example pre-pro-
cessing functions include removing variables with an exces-
sive number of cardinality levels, removing variables with an
excessive number of missing values, imputing numeric miss-
ing values using distributional methods, imputing class vari-
ables using decision tree methods, replacing numeric outliers
an excessive number of standard deviations from a mean
value, binning class variable outliers, standardizing interval
variables, scaling or encoding class variables, etc.

In an operation 204, decorrelated variables are selected.
For example, the decorrelated variables may be selected from
the columns included in data matrix 124. As an example, the
decorrelated variables may be selected using an unsupervised
graph-based method that automatically removes correlated
variables from data matrix 124. Referring to FIG. 3, example
operations associated with selecting the decorrelated vari-
ables using cluster data application 122 are described. The
order of presentation of the operations of FIG. 3 is not
intended to be limiting, and additional, fewer, or different
operations may be performed depending on the embodiment.

In an operation 300, a second indicator of a correlation
algorithm to execute is received. For example, the second
indicator indicates a name of a correlation algorithm. The
second indicator may be received by cluster data application
122 after selection from a user interface window or after entry
by a user into a user interface window. A default value for the
correlation algorithm to execute may further be stored, for
example, in computer-readable medium 108. In an alternative
embodiment, the correlation algorithm may not be selectable.
An example correlation algorithm is a Pearson product-mo-
ment correlation algorithm, a Spearman rank-order correla-
tion algorithm, an unscaled correlation algorithm, etc. as
understood by a person of skill in the art.

In an operation 302, a third indicator of a binary threshold
used to compute a binary similarity matrix is received. The
third indicator indicates a value of the binary threshold. The
third indicator may be received by cluster data application
122 after a selection from a user interface window or after
entry by a user into a user interface window. A default value
for the binary threshold may further be stored, for example, in
computer-readable medium 108. In an alternative embodi-
ment, the binary threshold may not be selectable. A value
range for the binary threshold may vary depending on the
correlation algorithm selected. For example, the value range
for the binary threshold using the Pearson product-moment
correlation algorithm may be between -1 and 1.

In an operation 303, a fourth indicator of a drop percentage
is received. The fourth indicator indicates a value of the drop
percentage. The drop percentage value is used to randomly
select nodes to drop as discussed further below. The fourth
indicator may be received by cluster data application 122
after a selection from a user interface window or after entry by
a user into a user interface window. A default value for the
drop percentage may further be stored, for example, in com-
puter-readable medium 108. In an alternative embodiment,
the drop percentage may not be selectable. A value range for
the drop percentage may be 0 to 100 though other ranges may
beused. For example, instead of a percentage, a decimal value
may be defined.
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In an operation 304, a fifth indicator of a stop criterion used
to stop the decorrelated variable selection process is received.
The fifth indicator may be received by cluster data application
122 after a selection from a user interface window or after
entry by a user into a user interface window. A default value
for the stop criterion may further be stored, for example, in
computer-readable medium 108. In an alternative embodi-
ment, the stop criterion may not be selectable.

In an operation 306, stop criterion input data, if any, is
received based on the indicated stop criterion or the defined
default stop criterion. For example, a value for a minimum
number of variables may be received for the indicated stop
criterion as discussed further below. As another example, a
desired percentage of variables may be received for the indi-
cated stop criterion as discussed further below.

In an operation 308, a correlation matrix is computed using
the correlation algorithm indicated in operation 300. The
correlation matrix includes a correlation value computed
between each pair of variables in data matrix 124 or the subset
of variables (columns) indicated in operation 200. As under-
stood by a person of skill in the art, the correlation value may
be positive or negative. For example, a value of one may
indicate a total positive correlation, a value of zero may indi-
cate no correlation, and a value of negative one may indicate
a total negative correlation between the pair of variables. In
general, the correlation matrix is symmetric, and the diagonal
cells are equal to one.

In an operation 310, a binary similarity matrix is computed
from the correlation matrix using the value of the binary
threshold. The correlation value in each cell of the correlation
matrix is compared to the value of the binary threshold and a
one or a zero is placed in the corresponding cell of the binary
similarity matrix. For example, when a positive correlation
value is greater than the binary threshold or a negative corre-
lation value is less than the negative of the binary threshold, a
one may be placed in the associated cell of the binary simi-
larity matrix indicating sufficient correlation to potentially
select. Conversely, when a positive correlation value is less
than the binary threshold or a negative correlation value is
greater than the negative of the binary threshold, a zero may
be placed in the associated cell of the binary similarity matrix.
When the correlation matrix is symmetric and the diagonal
cells are equal to one, these cells may not need to be compared
to the binary threshold.

In an operation 312, an undirected graph is defined based
on the binary similarity matrix where the correlated variables
are connected nodes in the undirected graph. For example, the
undirected graph is defined to capture connectivity between
variables when the value of the associated cell is one to
indicate correlated variables.

For illustration, referring to FIG. 4, a first undirected graph
400 is shown. FIG. 4 provides an example visual representa-
tion of an undirected graph though no visual representation is
needed as understood by a person of skill in the art. The
undirected graph may be a data structure that stores the con-
nectivity information for the variables. First undirected graph
400 may include a first subgraph 402 and a second subgraph
404. A subgraph is a group of one or more connected nodes.
First undirected graph 400 may include a fewer or a greater
number of subgraphs. For example, all of the nodes may be
connected such that first undirected graph 400 includes a
single subgraph. First subgraph 402 may include a first node
406 and a second node 408. Second subgraph 404 may
include a third node 410, a fourth node 412, a fifth node 414,
a sixth node 416, a seventh node 418, an eighth node 420, a
ninth node 422, a tenth node 424, and an eleventh node 426.
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Each node is associated with a variable in the binary simi-
larity matrix. For example, a first variable is associated with
first node 406, a second variable is associated with second
node 408, a third variable is associated with third node 410, a
fourth variable is associated with fourth node 412, a fifth
variable is associated with fifth node 414, a sixth variable is
associated with sixth node 416, a seventh variable is associ-
ated with seventh node 418, a eighth variable is associated
with eighth node 420, a ninth variable is associated with ninth
node 422, a tenth variable is associated with tenth node 424,
and an eleventh variable is associated with eleventh node 426.

The number shown in each node indicates a connectivity
counter value for that node determined based on a number of
connections between that variable and other variables based
on values in the binary similarity matrix. The connections
exist because the binary similarity matrix includes a one (or
other predefined value) in the cell between that pair of vari-
ables. As an example, the fourth variable associated with
fourth node 412 is sufficiently correlated (e.g., correlation
value>binary threshold or correlation value<-binary thresh-
o0ld) with the third variable associated with third node 410 and
with the fifth variable associated with fifth node 414 to con-
nect these variables in second subgraph 404; the fifth variable
associated with fifth node 414 is also sufficiently correlated
with the sixth variable associated with sixth node 416 and
with the eighth variable associated with eighth node 420 to
connect these variables in second subgraph 404; and so on as
indicated in first undirected graph 400.

Referring again to FIG. 3, in an operation 314, a node is
selected from the undirected graph. As an example, any node
of the least connected nodes (as indicated by a minimum
value of the connectivity counter values) may be selected
from the undirected graph. For illustration, and referring
again to FIG. 4, the least connected nodes are first node 406
and second node 408 of first subgraph 402, and third node
410, seventh node 418, ninth node 422, tenth node 424, and
eleventh node 426 of second subgraph 404. As an example,
first node 406 may be selected. As another example, seventh
node 418 may be selected randomly from third node 410,
seventh node 418, ninth node 422, tenth node 424, and elev-
enth node 426 of second subgraph 404.

Referring again to FIG. 3, in an operation 316, a determi-
nation is made concerning whether or not the selected node is
removed. If the selected node is removed, processing contin-
ues in an operation 318. If the selected node is not removed,
processing continues in operation 314 to select a different
node from the least connected nodes remaining in the undi-
rected graph.

For illustration, a random draw value may be determined
using a statistical distribution, such as a uniform statistical
distribution, as understood by a person of skill in the art.
Other statistical distributions may be used and may be user
selectable in a process similar to that described with reference
to operation 300, but for a statistical distribution algorithm.
The random draw value is compared to the drop percentage
value to determine whether or not a node is removed from a
subgraph. A constraint may be that atleast one node is kept for
each subgraph initially defined in operation 312.

In operation 318, the selected node is removed from the
undirected graph. Assuming that input variables that are
highly correlated to other input variables are generally repre-
sentative of each other, correlation between the input vari-
ables is removed while preserving the most representative
variables by successively removing the least connected
nodes. For example, the drop percentage value is used to
remove the least connected nodes from each subgraph.
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For illustration, in operation 314, first node 406 may be
selected from first subgraph 402, and a first random draw
value determined in operation 316. When the first random
draw value is greater than the drop percentage value, first
node 406 is not removed from first subgraph 402, and pro-
cessing continues in operation 314. When the first random
draw value is less than the drop percentage value, first node
406 is removed from first subgraph 402 in operation 318. Of
course, the less than and greater than tests may be reversed,
and the first random draw value equal to the drop percentage
value may be designed to trigger either removing or not
removing the node.

In an operation 320, after removal of the selected node, a
determination is made concerning whether or not a stop cri-
terion is satisfied. If the stop criterion is satisfied, processing
continues in an operation 326. If the stop criterion is not
satisfied, processing continues in an operation 322.

For example, a stop criterion may test whether or not there
is a subgraph in the undirected graph that includes more than
one node. The stop criterion may be satisfied when each
subgraph includes a single node.

As another example, a stop criterion may test whether or
nota number of remaining nodes (variables) in the undirected
graph is equal to the minimum number of variables optionally
defined in operation 306. The stop criterion may be satisfied
when the number of remaining nodes equals the minimum
number of variables.

As still another example, a stop criterion may test whether
or not a percentage of original nodes (variables) in the undi-
rected graph remain. For example, a desired number of
remaining variables may be initialized in operation 312, after
defining the undirected graph, as a percentage of the number
of nodes in the undirected graph. The desired percentage of
nodes (variables) used to determine the desired number of
remaining variables may be optionally defined in operation
306. The stop criterion may be satisfied when the number of
remaining nodes equals the desired number of remaining
variables.

In operation 322, a determination is made concerning
whether or not the connectivity counters associated with each
node in the undirected graph are updated to reflect the
removed node. When the connectivity counters are updated,
processing continues in an operation 324. By updating the
connectivity counters, the least connected nodes are rede-
fined. When the connectivity counters are not updated, pro-
cessing continues in operation 314 to select a different node
from the least connected nodes remaining in the undirected
graph. By not updating the connectivity counters, the cur-
rently defined least connected nodes remain the same.

In operation 324, the connectivity counter values for each
node in the undirected graph are updated to reflect lost con-
nectivity between nodes when nodes are removed from the
undirected graph in operation 318 resulting in a new set of
least connected nodes. Processing continues in operation 314
to select a different node from the least connected nodes
remaining in the undirected graph.

Referring again to FIG. 4, after testing first node 406 of first
subgraph 402 and each of third node 410, seventh node 418,
ninth node 422, tenth node 424, and eleventh node 426 from
second subgraph 404 for removal, first node 406, third node
410, and tenth node 424 may have been selected for removal.
For example, third node 410 may be selected from second
subgraph 404, and a second random draw value determined.
When the second random draw value is less than the drop
percentage value, third node 410 is removed from second
subgraph 404. Seventh node 418 may be selected from second
subgraph 404, and a third random draw value determined.
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When the third random draw value is greater than the drop
percentage value, seventh node 418 is not removed from
second subgraph 404. Ninth node 422 may be selected from
second subgraph 404, and a fourth random draw value deter-
mined. When the fourth random draw value is greater than the
drop percentage value, ninth node 422 is not removed from
second subgraph 404. Tenth node 424 may be selected from
second subgraph 404, and a fifth random draw value deter-
mined. When the fifth random draw value is less than the drop
percentage value, tenth node 424 is removed from second
subgraph 404. Eleventh node 426 may be selected from sec-
ond subgraph 404, and a sixth random draw value deter-
mined. When the sixth random draw value is greater than the
drop percentage value, eleventh node 426 is not removed
from second subgraph 404.

Referring to FIG. 5, a second undirected graph 400qa is
shown after removing first node 406, third node 410, and
tenth node 424 and updating the connectivity counter values
for each node. Second undirected graph 400a may include
third subgraph 402a and fourth subgraph 404a. Third sub-
graph 402a may include second node 408. Fourth subgraph
404q may include fourth node 412, fifth node 414, sixth node
416, seventh node 418, eighth node 420, ninth node 422, and
eleventh node 426. Because only second node 408 of first
subgraph 402 remains in first subgraph 402, third subgraph
402a may not be processed further, and the second variable
associated with second node 408 may be selected as a deco-
rrelated variable.

Fourth node 412, seventh node 418, ninth node 422, and
eleventh node 426 of fourth subgraph 404a are now the least
connected nodes from which a node is selected in operation
314. Referring to FIG. 6, a third undirected graph 4005 is
shown after removing seventh node 418 and ninth node 422
from fourth subgraph 404a, based on additional random draw
values, and updating the connectivity counter values for each
node in third undirected graph 40056. Third undirected graph
4005 may include third subgraph 4024 and a fifth subgraph
4045p. Fifth subgraph 4045 may include fourth node 412, fifth
node 414, sixth node 416, eighth node 420, and eleventh node
426.

Fourth node 412, sixth node 416, and eleventh node 426 of
fifth subgraph 4045 are now the least connected nodes from
which anode is selected in operation 314. Referring to FIG. 7,
a fourth undirected graph 400¢ is shown after removing
fourth node 412 and eleventh node 426 from fifth subgraph
4045, based on additional random draw values, and updating
the connectivity counter values for each node in third undi-
rected graph 4005. Fourth undirected graph 400¢ may include
third subgraph 402a and a sixth subgraph 404c¢. Sixth sub-
graph 404c¢ may include fifth node 414, sixth node 416, and
eighth node 420.

Sixth node 416 and eighth node 420 of sixth subgraph 404¢
are now the least connected nodes from which a node is
selected in operation 314. Referring to FIG. 8, a fifth undi-
rected graph 4004 is shown after removing sixth node 416 and
eighth node 420 from sixth subgraph 404c¢, based on addi-
tional random draw values, and updating the connectivity
counter values for each node in fourth undirected graph 400c.
Fifth undirected graph 4004 may include third subgraph 4024
and a seventh subgraph 404d. Seventh subgraph 4044 may
include fifthnode 414. Because only fifthnode 414 remains in
seventh subgraph 404d, seventh subgraph 4044 may not be
processed further, and the fifth variable associated with fifth
node 414 may be selected as a decorrelated variable.

Referring again to FIG. 3, in operation 326, the remaining
nodes in the undirected graph when the stop criterion is sat-
isfied are output as the decorrelated variables. As examples,
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the decorrelated variables may be stored in computer-read-
able medium 108 and/or may be output to the user using
display 116 or printer 120. For example, in the illustrative
embodiment of FIG. 8, the second variable associated with
second node 408 and the fifth variable associated with fifth
node 414 are output as the decorrelated variables by storing in
computer-readable medium 108. Reducing the number of
variables decreases an execution time of further processing
performed by cluster data application 122.

Referring again to FIG. 2, processing may continue in an
operation 206. In operation 206, a number of clusters is deter-
mined using the decorrelated variables selected in operation
204. As an example, the number of clusters may be deter-
mined using a clustering algorithm that automatically deter-
mines a number of clusters for the selected correlated vari-
ables using data in data matrix 124. Referring to FIG. 9,
example operations are described that are associated with
determining the number of clusters using cluster data appli-
cation 122. The order of presentation of the operations of FIG.
9 is not intended to be limiting, and additional, fewer, or
different operations may be performed depending on the
embodiment.

In an operation 900, a sixth indicator is received that indi-
cates data to continue processing. For example, the sixth
indicator may indicate a location of data matrix 124 and the
selected decorrelated variables that identify columns in data
matrix 124. In an alternative embodiment, the sixth indicator
may not indicate the selected decorrelated variables and may
use all of the variables or variables selected using a different
process, such as selection by a user. The sixth indicator may
be received by cluster data application 122, for example, after
selection from a user interface window or after entry by a user
into a user interface window. The sixth indicator may include
information from the first indicator. The sixth indicator may
further indicate that only a portion of the data stored in data
matrix 124 be clustered whether or not the first indicator
indicated that only a portion of the data stored in data matrix
124 be clustered. For example, in a large dataset only a subset
of the observations may be used to determine the number of
clusters. Sixth indicator may indicate a number of observa-
tions to include, a percentage of observations of the entire
dataset to include, etc. A subset may be created from data
matrix 124 by sampling.

In an operation 902, a seventh indicator of a range of
numbers of clusters to evaluate is received. For example, the
seventh indicator indicates a minimum number of clusters to
evaluate and a maximum number of clusters to evaluate. The
seventh indicator may further indicate an increment that is
used to define an incremental value for incrementing from the
minimum to the maximum number of clusters or vice versa.
Of course, the incremental value may be or default to one. The
seventh indicator may be received by cluster data application
122 after selection from a user interface window or after entry
by a user into a user interface window. Default values for the
range of numbers of clusters to evaluate may further be
stored, for example, in computer-readable medium 108. In an
alternative embodiment, the range of numbers of clusters to
evaluate may not be selectable.

In an operation 904, an eighth indicator of a number of
Monte Carlo iterations to execute for a reference dataset is
received. The eighth indicator may be received by cluster data
application 122 after a selection from a user interface window
or after entry by a user into a user interface window. A default
value for the number of Monte Carlo iterations to execute for
generating reference datasets may further be stored, for
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example, in computer-readable medium 108. In an alternative
embodiment, the number of Monte Carlo iterations may not
be selectable.

In an operation 906, a ninth indicator of a clustering algo-
rithm to execute to cluster the data and the reference dataset is
received. For example, the ninth indicator indicates a name of
a clustering algorithm. The ninth indicator may be received
by cluster data application 122 after selection from a user
interface window or after entry by a user into a user interface
window. A default value for the clustering algorithm to
execute may further be stored, for example, in computer-
readable medium 108. In an alternative embodiment, the clus-
tering algorithm may not be selectable. Example clustering
algorithms include the k-means algorithm, Ward’s minimum-
variance algorithm, a hierarchical algorithm, a median algo-
rithm, McQuitty’s similarity analysis algorithm, or other
algorithms based on minimizing the cluster residual sum of
squares as understood by a person of skill in the art.

In an operation 908, a tenth indicator of a variable selection
algorithm to execute to cluster the data and the reference
dataset is received. For example, the tenth indicator indicates
a name of a statistical distribution algorithm. The tenth indi-
cator may further include values associated with parameters
used to define the statistical distribution algorithm. For
example, if the statistical distribution algorithm indicated is
“Normal Distribution”, the parameter may be a standard
deviation and/or a mean. As another example, if the statistical
distribution algorithm indicated is “Uniform Distribution”,
the parameter may be a probability threshold. The tenth indi-
cator may be received by cluster data application 122 after
selection from a user interface window or after entry by a user
into a user interface window. A default value for the statistical
distribution algorithm to execute may further be stored, for
example, in computer-readable medium 108. In an alternative
embodiment, the statistical distribution algorithm may not be
selectable.

In an operation 910, one or more variables are selected
from data matrix 124 using the variable selection algorithm.
For example, the one or more variables may be selected from
the selected decorrelated variables randomly using the vari-
able selection algorithm. The same or a different number of
the one or more variables may be selected for each iteration of
operation 910. Selecting random subsets from the selected
decorrelated variables corresponds to random projections of
the data in data matrix 124 onto multiple subspaces of the
original input space. Each subspace is defined by the selected
decorrelated variables.

In an operation 912, observation data points for the
selected one or more variables are selected from data matrix
124. The number of the observation data points selected may
be all or less than all of the observation data points for the
selected one or more variables included in data matrix 124
due to sampling.

In an operation 914, a number of clusters is determined
using the selected observation data points for the selected one
or more variables. For illustration, the number of clusters is
determined using the selected observation data points and
clustering in the input space without transforming to another
space. As an example, the number of clusters may be deter-
mined using example operations described with reference to
FIG. 10. The order of presentation of the operations of FIG.
10 is not intended to be limiting, and additional, fewer, or
different operations may be performed depending on the
embodiment.

Inanoperation 1000, a number of clusters is initialized. For
example, the number of clusters may be initialized to the
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minimum number of clusters to evaluate or to the maximum
number of clusters to evaluate defined in operation 902.

In an operation 1002, the clustering algorithm indicated in
operation 906 is executed to cluster the data selected in opera-
tion 912 into the defined number of clusters. The number of
clusters may be defined based on the initialized number of
clusters defined in operation 1000 or in an operation 1026.
The executed clustering algorithm may be selected for execu-
tion based on the ninth indicator. The clustering algorithm
performs a cluster analysis on the basis of distances that are
computed from the selected one or more variables. The
selected observation data points are divided into clusters such
that each observation belongs to a single cluster. Additionally,
the clustering algorithm defines a centroid location for each
cluster.

In an operation 1004, a first residual sum of squares is
computed for the defined clusters as W,=2,_ *Z,_ "llx, —c |,
where k is the defined number of clusters, n; is a number of
data points in cluster j of the defined clusters, x, ; is an ith
observation data point in cluster j of the defined clusters, and
¢; is a centroid location of cluster j of the defined clusters.

In an operation 1006, a boundary is defined for each of the
clusters defined in operation 1004. For example, a minimum
value and a maximum value are defined for each dimension of
each cluster to define a possibly multi-dimensional box
depending on a number of the selected one or more variables
defined in operation 910.

In an operation 1008, a reference distribution is created.
The reference distribution includes a new plurality of data
points. The new plurality of data points are created within the
defined boundary of at least one cluster of the defined clus-
ters. The new data points may be selected based on a uniform
distribution within the boundary of each defined cluster. For
example, a first plurality of data points are created within the
boundary defined for a first cluster of the defined clusters, a
second plurality of data points are created within the bound-
ary defined for a second cluster of the defined clusters, a third
plurality of data points are created within the boundary
defined for a third cluster of the defined clusters, and so on up
to the number of clusters created.

In an illustrative embodiment, n* , a number of data points
in cluster j of the reference distribution is selected based on n,
the number of data points in cluster j of the clusters defined in
operation 1002. For example, n*; may be proportional to n,.
The proportion may be less than one, equal to one, or greater
than one. The proportion may be predefined by a user or based
on a default value. In another illustrative embodiment, n*; is a
predetermined number of data points regardless of the value
of n,. The reference distribution data may be created and
stored on one or more devices and/or on computer-readable
medium 108.

In an operation 1010, the clustering algorithm indicated in
operation 906 is executed to cluster the reference distribution
created in operation 1008 into the defined number of clusters.
The data may be received from one or more devices through
communication interface 106 and/or may be received from
storage in computer-readable medium 108.

In an operation 1012, a second residual sum of squares is
computed for the clusters defined using the reference distri-
bution created in operation 1008 (second clusters) as
W*kb:ijlkZizl"*ﬂ|x*iJ—c*j||2, where b is an index for a
Monte Carlo iteration number, n*, is the number of data points
in cluster j of the defined second clusters, x*, ; is the ith
observation in cluster j of the defined second clusters, and c*;
is the centroid location of cluster j of the defined second
clusters.
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In an operation 1014, a determination is made concerning
whether or not another Monte Carlo iteration is to be
executed. If another Monte Carlo iteration is to be executed,
processing continues in an operation 1016. If the number of
Monte Carlo iterations indicated by the third indicator has
been executed, processing continues in an operation 1018. In
an alternative embodiment, instead of pre-determining a
number of Monte Carlo iterations as the number of repetitions
of operations 1008, 1010, and 1012, an evaluation may be
made by a user to determine when the results appear satisfac-
tory or stable based on a display of a line or curve showing an
average or a dispersion of the number of clusters.

In operation 1016, a next random seed is selected for the
next Monte Carlo iteration. Processing continues in operation
1008 to create another reference distribution. Because the
data points included in the reference distribution are selected
based on sampling within the boundary of each defined clus-
ter, changing the random seed changes the data points
included in the next reference distribution. If data transfor-
mation device 100 is multi-threaded, operations 1008, 1010,
and 1012 may be performed concurrently.

In operation 1018, an averaged residual sum of squares is
computed for the Monte Carlo iterations as

W= g2 e 3 T e ) o

Wy = Eszl log(W,),

where B is the number of Monte Carlo iterations or the num-
ber of the plurality of times that operation 1008 is repeated.

In an operation 1020, a gap statistic is computed for the
defined number of clusters as gap(k)=W*,-log(W,). In
operation 1020, a standard deviation is also defined for the
defined number of clusters as

= 2]
s =[5 GogWpy) = W)

The gap statistic is not a constant when k=1. To avoid this, the
gap statistic may be normalized. For example, the gap statistic
may be normalized as

*

W W,
Normgap(k) = Wr ™ log(Wl),
I

which equals zero for k=1. As another example, the gap
statistic may be normalized as

Wi —log(Wp)

Noma P ) = Fo —ogWio)

where E(.) is the empirical expectation. As yet another
example, the gap statistic may be normalized as Normgap(k)
=W*,~log(W,)-E(W*_-log(W,)). As still another example,
the gap statistic may be normalized as
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Nommgapti < 10800 = EQW; ~ log(Wy))
s = Std(W; —log(Wi) :

where std(.) is the empirical standard deviation.

In an operation 1022, the computed gap statistic and the
computed standard deviation are stored in association with
the defined number of clusters. For example, the computed
gap statistic and the computed standard deviation are stored in
computer-readable medium 108 indexed by the defined num-
ber of clusters.

In an operation 1024, a determination is made concerning
whether or not another iteration is to be executed with a next
number of clusters. For example, the determination may com-
pare the current defined number of clusters to the minimum
number of clusters or the maximum number of clusters to
determine if each iteration has been executed as understood
by a person of skill in the art. If another iteration is to be
executed, processing continues in an operation 1026. If each
of'the iterations has been executed, processing continues in an
operation 1028.

In operation 1026, a next number of clusters is defined by
incrementing or decrementing a counter of the number of
clusters from the minimum number of clusters or the maxi-
mum number of clusters, respectively. Processing continues
in operation 1002 to execute the clustering algorithm with the
next number of clusters as the defined number of clusters. If
data transformation device 100 is multi-threaded, operations
1002-1026 may be performed concurrently.

In operation 1028, an estimated best number of clusters for
the received data is selected by comparing the gap statistic
computed for each iteration of operation 1020. Referring to
FIG. 22, a plot of a gap statistic value computed as a function
of'a number of clusters for a sample dataset is shown. A first
local maxima for the gap statistic is indicated at a first data
point 2200. A second local maxima for the gap statistic is
indicated at a second data point 2202. A third local maxima
for the gap statistic is indicated at a third data point 2204. First
data point 2200 also has a maximum value for the computed
gap statistic.

In an illustrative embodiment, the estimated best number
of clusters may be selected as the first local maxima for a
number of clusters greater than one. In another illustrative
embodiment, the estimated best number of clusters may be
selected as the local maxima that has a maximum value for the
gap statistic for the number of clusters greater than one. Of
course, if the gap statistic is normalized, the gap statistic for
k=1 is not a local maxima. In the illustrative embodiment
shown in FIG. 22, the estimated best number of clusters is
three clusters based on the gap statistic of first data point
2200.

In yet another illustrative embodiment, the estimated best
number of clusters may be selected as the defined number of
clusters associated with a minimum defined number of clus-
ters for which the computed gap statistic for that cluster is
greater than the determined error gap of a subsequent cluster.
The error gap is the difference between the computed gap
statistic and the computed standard deviation as err(k)=gap
(k)-sd(k).

In still another illustrative embodiment, a first number of
clusters may be determined as the first local maxima for a
number of clusters greater than one; a second number of
clusters may be determined as the local maxima that has a
maximum value for the gap statistic for the number of clusters
greater than one; and a third number of clusters may be
determined as the defined number of clusters associated with
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a minimum defined number of clusters for which the com-
puted gap statistic for that cluster is greater than the deter-
mined error gap of the subsequent cluster. The estimated best
number of clusters may be selected as the determined first
number of clusters unless the determined second number of
clusters equals the determined third number of clusters in
which case the estimated best number of clusters is deter-
mined as the determined second number of clusters. Other
rules for selecting among the first number of clusters, the
second number of clusters, and third number of clusters may
be defined.

Referring again to FIG. 9, processing may continue in an
operation 916. In operation 916, cluster data for the deter-
mined best number of clusters is output. For example, cluster
centroid locations for each of the determined best number of
clusters and cluster assignments for the observation data
points to the determined best number of clusters may be
stored in computer-readable medium 108. The cluster cen-
troid locations for each of the determined best number of
clusters and cluster assignments for the observation data
points to the determined best number of clusters define a set of
clusters.

Referring again to FIG. 2, processing may continue in an
operation 208. In operation 208, a determination is made
concerning whether or not another determination of the num-
ber of clusters is to be performed. If another determination is
to be performed, processing continues in operation 910 to
determine another number of clusters. If another determina-
tion is not to be performed, processing continues in an opera-
tion 210. The determination may be based on a pre-defined
number of determinations that may be defined similar to the
number of Monte Carlo iterations in operation 904. 250 deter-
minations may be a default value. In an alternative embodi-
ment, instead of pre-determining a number of determinations,
an evaluation may be made by a user to determine when the
results appear satisfactory or stable based on a display of a
line or curve showing a standard deviation or a dispersion of
the number of clusters determined in each iteration of opera-
tion 910. Instead of an evaluation by a user, an automatic
evaluation may be performed. For example, a pre-defined
standard deviation threshold may be defined similar to the
number of Monte Carlo iterations in operation 904. The cal-
culated standard deviation may be compared to the pre-de-
fined standard deviation threshold. When the calculated stan-
dard deviation is less than the pre-defined standard deviation
threshold, no additional determination of the number of clus-
ters is performed.

In operation 210, a number of clusters is selected from the
plurality of determinations determined in each performance
of operation 1028. The selected number of clusters has been
cross-validated on random subsets of variables and consider-
ing a plurality of clustering solutions resulting in a global best
estimate for the number of clusters. For illustration, referring
to FIG. 11, a histogram 1100 showing the determined number
of clusters from each execution of operation 1028 is pre-
sented. In the illustrative embodiment of FIG. 11, operation
1028 was performed 1000 times though a greater or a fewer
number of performances may be performed in alternative
embodiments. A maximum histogram value is indicated for
eight clusters. If a maximum value is selected, the number of
clusters is eight in the illustrative embodiment. Other meth-
ods may be used to select the number of clusters from histo-
gram data for the number of clusters. For example, one or
more criterion similar to that described in operation 1028 for
selecting the best number of clusters may be used in operation
210.
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Referring again to FIG. 2, processing may continue in an
operation 212. In operation 212, composite cluster centroid
locations are determined to use to cluster observations. There
is a different set of cluster centroid locations defined for each
iteration of operation 1028 that resulted in the number of
clusters selected in operation 210. Composite cluster centroid
locations are determined to define a single set of cluster
centroid locations. As an example, the composite cluster cen-
troid locations may be determined using example operations
described with reference to F1G. 12. The order of presentation
of'the operations of FIG. 12 is not intended to be limiting, and
additional, fewer, or different operations may be performed
depending on the embodiment.

In an operation 1200, cluster data for each iteration of
operation 1028 that resulted in the number of clusters selected
in operation 210 is received. For example, referring to FIG.
11, cluster data is received for the approximately 150 itera-
tions of operation 1028 that resulted in eight clusters selected
as the best number of clusters. For example, the cluster data
may be received by reading the data stored in computer-
readable medium 108 in operation 916.

In an operation 1202, first centroid locations are selected.
For example, the centroid locations are selected from the
cluster data associated with the first performance of operation
1028 that resulted in the number of clusters selected in opera-
tion 210. These centroid locations are selected as the first
centroid locations.

In an operation 1204, composite centroid locations are
initialized with the selected first centroid locations. For
example, if the number of clusters selected in operation 210 is
eight, the composite centroid locations will include eight
centroid locations.

In an operation 1206, next centroid locations are selected.
For example, the next centroid locations are selected from the
cluster data associated with the next performance of opera-
tion 1028 that resulted in the number of clusters selected in
operation 210. These centroid locations are selected as the
next centroid locations.

In an operation 1208, a distance if computed between pairs
of the composite centroid locations and the next centroid
locations. For example a Euclidian distance may be computed
between each pair of the composite centroid locations and the
next centroid locations using a Euclidian distance computa-
tion algorithm, a Manhattan distance computation algorithm,
a Minkowski distance computation algorithm, a Hamming
distance computation algorithm, a Jacquard distance compu-
tation algorithm, etc. as understood by a person of skill in the
art.

In an operation 1210, an optimum pairing between the
composite centroid locations and the next centroid locations
is selected. For example, a pairing associated with a minimum
distance may be selected. Each composite centroid location is
optimally paired to a single next centroid location. In an
operation 1212, the composite centroid locations are updated
based on the selected optimum pairing.

For illustration, referring to FIG. 13, a first composite
centroid location 1300, a second composite centroid location
1302, a third composite centroid location 1304, a first next
centroid location 1306, a second next centroid location 1308,
and a third next centroid location 1310 are shown in accor-
dance with an illustrative embodiment that includes three
clusters. In operation 1210, the optimum pairing was deter-
mined as first composite centroid location 1300 and first next
centroid location 1306, second composite centroid location
1302 and second next centroid location 1308, and third com-
posite centroid location 1304 and third next centroid location
1310 based on the distance computation. New composite
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centroid locations for each of first composite centroid loca-
tion 1300, second composite centroid location 1302, and third
composite centroid location 1304 are shown, respectively, at
a first new centroid location 1312, a second new centroid
location 1314, and a third new centroid location 1316. First
new centroid location 1312, second new centroid location
1314, and third new centroid location 1316 may be computed
by averaging coordinate locations between the paired cen-
troid locations. In an alternative embodiment, a weight may
be used to compute the new centroid locations. For example,
a ratio of a number of observations in each cluster of the
paired clusters may be used to determine a weight that is used
to adjust the new centroid locations.

Referring again to FIG. 12, in an operation 1214, cluster
assignments for the observations included in the cluster asso-
ciated with each centroid location are updated to reflect the
composite cluster to which the observation is assigned based
on the optimum pairing. For example, cluster assignment for
the observations associated with a first cluster having first
next centroid location 1306 are updated to indicate first com-
posite centroid location 1300. As an example, an index to the
first cluster is changed to a new index associated with the first
composite centroid location 1300 in the cluster data for the
iteration of operation 1028 that resulted in first next centroid
location 1306; an index to the second cluster is changed to a
new index associated with the second composite centroid
location 1302 in the cluster data for the iteration of operation
1028 that resulted in second next centroid location 1308; an
index to the third cluster is changed to a new index associated
with the third composite centroid location 1304 in the cluster
data for the iteration of operation 1028 that resulted in third
next centroid location 1310. In this manner, the cluster
assignments for each iteration of operation 1028 that resulted
in the number of clusters selected in operation 210 are
updated to reflect the composite cluster assignment instead.

In an operation 1216, a determination is made concerning
whether or not another iteration of operation 1028 resulted in
the number of clusters selected in operation 210. If another
iteration of operation 1028 did not result in the number of
clusters selected in operation 210, processing continues in an
operation 1218. If another iteration of operation 1028 resulted
in the number of clusters selected in operation 210, process-
ing continues in operation 1206 to select the next cluster data
and update the composite centroid locations and observation
cluster assignments.

For example, referring to FIG. 14, a fourth next centroid
location 1400, a fifth next centroid location 1402, and a sixth
next centroid location 1404 are shown in accordance with an
illustrative embodiment. In operation 1210, the optimum
pairing was determined as first composite centroid location
1300 and fourth next centroid location 1400, second compos-
ite centroid location 1302 and fifth next centroid location
1402, and third composite centroid location 1304 and sixth
next centroid location 1404 based on the distance computa-
tion. New composite centroid locations for each of first com-
posite centroid location 1300, second composite centroid
location 1302, and third composite centroid location 1304 are
shown, respectively, at a fourth new centroid location 1406, a
fifth new centroid location 1408, and a sixth new centroid
location 1410.

In operation 1218, data defining the composite centroid
locations and cluster assignments is output, for example, to
computer-readable medium 108.

Referring again to FIG. 2, processing may continue in an
operation 214. In operation 214, observations are assigned to
the composite clusters. As an example, the observations are
assigned to clusters associated with the composite centroid
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locations using example operations described with reference
to FIG. 15. The order of presentation of the operations of F1G.
15 is not intended to be limiting, and additional, fewer, or
different operations may be performed depending on the
embodiment.

In an operation 1500, a first observation to assign to a
composite cluster is selected, for example, from data matrix
124. All or a subset of the observations stored in data matrix
124 may be assigned to the composite clusters.

In an operation 1501, an eleventh indicator is received that
indicates a cluster assignment algorithm. For example, the
eleventh indicator indicates a name of a cluster assignment
algorithm. The eleventh indicator may be received by cluster
data application 122 after selection from a user interface
window or after entry by a user into a user interface window.
A default value for the cluster assignment algorithm to
execute may further be stored, for example, in computer-
readable medium 108. In an alternative embodiment, the clus-
ter assignment algorithm may not be selectable.

In an operation 1502, a determination is made concerning
whether or not a nearest cluster assignment algorithm is used
based on the eleventh indicator or default value for the cluster
assignment algorithm. If the nearest cluster assignment algo-
rithm is used, processing continues in an operation 1504. If
the nearest cluster assignment algorithm is not used, process-
ing continues in an operation 1508.

In operation 1504, a distance is computed between the
values of the selected decorrelated variables for the selected
observation and each composite centroid location. In an
operation 1506, the observation is assigned to the composite
cluster associated with a minimum distance. Processing con-
tinues in an operation 1518.

In operation 1508, a probability of assigning the observa-
tion to each composite cluster is determined. Because the
composite cluster assignment was updated in operation 1214
for each iteration of operation 1028 that resulted in the num-
ber of clusters selected in operation 210, a probability of
assigning the observation to a specific composite cluster can
be determined based on how many times a given observation
was placed into the specific composite cluster. For example, if
a given observation was placed into a specific composite
cluster n times, the probability that the observation belongs to
that composite cluster is n/r, where r is the number of itera-
tions of operation 1028 that resulted in the number of clusters
selected in operation 210. If the same observation was placed
into another composite cluster m times, the probability of the
observation belonging to the other composite cluster is m/r. If
the same observation was placed into still another composite
cluster p times, the probability of the observation belonging
to the other composite cluster is p/r. Of course, if the obser-
vation was assigned to the same composite cluster each time,
the probability is one for that same composite cluster and zero
for the remaining composite clusters.

In an operation 1510, a determination is made concerning
whether or not a probability is one for a specific composite
cluster. For example, the probability is one if the assignment
was consistently to the same composite cluster. If the prob-
ability is one for a specific composite cluster, processing
continues in an operation 1512. If the probability is not one
for a specific composite cluster, processing continues in an
operation 1514. In operation 1512, the observation is
assigned to the specific composite cluster having a probabil-
ity of one.

In operation 1514, a random draw value is computed, for
example, from a statistical distribution algorithm such as a
uniform statistical distribution algorithm. In operation 1516,
the observation is assigned to a composite cluster having a
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probability greater than zero based on the random draw value.
For example, the probability values may be converted to
consecutive values from zero to one by successively adding
the computed probability to a previous value and selecting the
composite cluster whose probability includes the random
draw value. For illustration, Table I below shows the conver-
sion to consecutive values.

TABLE I

Composite cluster number ~ Probability — Consecutive probability value

5 0.18 0.18
150 0.3 0.48
239 0.37 0.85
456 0.15 1

If the random draw value is 0.67, the observation is
assigned to composite cluster number 239 because 0.67 is
between 0.48 and 0.85.

As an alternative, operations 1510, 1512, 1514, and 1516
may not be performed. Instead, the observation may be
assigned to the composite cluster having a highest probabil-
ity. As another alternative, the observation is assigned to all of
the composite clusters having a probability greater than zero.

In operation 1518, a determination is made concerning
whether or not there is another observation to process. If there
is another observation to process, processing continues in
operation 1502. If there is not another observation to process,
processing continues in optionally one of operations 216,
220, or 224 shown with reference to FIG. 2.

Referring again to FIG. 2, in operation 216, cluster data
126 is output that defines each composite cluster of the com-
posite clusters. For each composite cluster, the associated
composite centroid location may be output, for example, by
storing in computer-readable medium 108. Additionally, the
selected decorrelated variables may be stored, for example, in
computer-readable medium 108. Further, a probability of
assigning an observation to each composite cluster may be
determined and output, for example, by storing in computer-
readable medium 108. For example, a probability may be
calculated for each composite cluster of the composite clus-
ters based on a percentage of the observations assigned to
each composite cluster in operation 214. Still further, a cen-
troid location of each of the centroid locations assigned to
each composite cluster of the composite clusters based on the
optimum pairing in operation 1210 may be output, for
example, by storing in computer-readable medium 108. Yet
further, an observation cluster assignment table may be out-
put, for example, by storing in computer-readable medium
108. For example, the observation cluster assignment table
may include the probability of assigning the observation to
each composite cluster with an index to the observation in
data matrix 124. As another option, the observation cluster
assignment table may be added to data matrix 124.

In an operation 218, a visualization of the composite clus-
ters may be presented. As an example, the composite clusters
may be visualized using example operations described with
reference to FIG. 16. The order of presentation of the opera-
tions of FIG. 16 is not intended to be limiting, and additional,
fewer, or different operations may be performed depending
on the embodiment.

In an operation 1600, a twelfth indicator is received of a
number of hidden layers and a number of neurons per layer
for a multi-layer neural network. The twelfth indicator may
be received by cluster data application 122 after a selection
from a user interface window or after entry by a user into a
user interface window. A default value for the number of
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hidden layers and a number of neurons per layer may further
be stored, for example, in computer-readable medium 108.
For example, a default may be five for the number of hidden
layers with the 2nd and 4th layers including half the number
of' neurons as the 1st and 5th layers. In an alternative embodi-
ment, the number of hidden layers and a number of neurons
per layer may not be selectable. Because the hidden units
defined by the middle layer of the multi-layer neural network
define are used to visualize the composite clusters, the num-
ber of neurons in the middle layer typically may be two or
three. For example with two neurons in the middle layer, a
two-dimensional scatterplot of composite clusters can be
used, and with three neurons in the middle layer, a three-
dimensional scatterplot of composite clusters can be used.

Referring to FIG. 23, a first neural network 2300 is shown
for illustration. first neural network 2300 may include a first
hidden layer 2302, a second hidden layer 2304, a middle
hidden layer 2306, a fourth hidden layer 2308, and a fifth
hidden layer 2310. The number of neurons in each layer are
shown in parentheses. For example, as inputs, the number of
layers may have been five with a number of neurons per layer
defined as 100, 50, and 2. The neurons for the remaining
layers may be based on the layers above the middle hidden
layer 2306 in reverse order as understood by a person of skill
in the art and illustrated in FIG. 23.

In an operation 1602, a thirteenth indicator is received of a
statistical distribution algorithm to use to add noise to the data
input to the neural network. For example, the thirteenth indi-
cator indicates a name of a statistical distribution algorithm.
The thirteenth indicator may be received by cluster data appli-
cation 122 after selection from a user interface window or
after entry by a user into a user interface window. A default
value for the statistical distribution algorithm to execute may
further be stored, for example, in computer-readable medium
108. In an alternative embodiment, the statistical distribution
algorithm may not be selectable.

In an operation 1604, any input parameters used by the
statistical distribution algorithm may be input. For example,
after a user selects a statistical distribution algorithm, cluster
data application 122 may present a user interface window that
requests entry by a user of values associated with the input
parameters used by the selected statistical distribution algo-
rithm or presents default values for the input parameters used
by the selected statistical distribution algorithm.

In an operation 1606, noised centroid location data is cre-
ated from the data defining the composite clusters. For
example, noise may be added to the centroid location of each
of'the centroid locations assigned to each composite cluster of
the composite clusters based on the optimum pairing in
operation 1210 by determining a random draw value from the
statistical distribution algorithm as understood by a person of
skill in the art.

In an operation 1608, each hidden layer of the neural net-
work is trained separately as a single-layer neural network in
a pretraining step as described, for example, in Hinton et al.,
Reducing the Dimensionality of Data with Neural Networks,
Science, Vol. 313, Jul. 28, 2006, pp. 504-507. For example,
the created noised data is input to the first hidden layer, which
is trained to determine a weight(s); the output of the first
hidden layer training is input to the second hidden layer,
which is trained to determine a weight(s); and so on to the
middle layer that has the fewest number of neurons. For
example, referring again to FIG. 23, a first weight W, (or
vector of weights) may be defined for first hidden layer 2302,
a second weight W, (or vector of weights) may be defined for
second hidden layer 2304, a third weight W (or vector of
weights) may be defined for middle hidden layer 2306, a
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fourth weight W, (or vector of weights) may be defined for
fourth hidden layer 2308, and a fifth weight W, (or vector of
weights) may be defined for fifth hidden layer 2310 in opera-
tion 1608.

Referring again to FIG. 16, in an operation 1610, the
weights determined for each hidden layer in operation 1608
are used to initialize the entire multi-layer neural network. In
an operation 1612, each hidden layer of the initialized multi-
layer neural network is trained simultaneously using the cre-
ated noised data as input to the first hidden layer. When a large
number of inputs are used in conjunction with a much smaller
number of hidden units, the features that are extracted as
outputs of the middle hidden units are an optimal, nonlinear
projection of the training examples onto a lower-dimensional
space.

In an operation 1614, the output features defining the
trained neural network are output. For example, the output
features defining the trained neural network may be output by
storing the output features in computer-readable medium
108.

In an operation 1616, a first centroid location is selected.
For example, a first centroid location of the centroid locations
assigned to the composite clusters may be read from com-
puter-readable medium 108.

In an operation 1618, the selected centroid location is input
to the trained neural network. In an operation 1620, a pro-
jected centroid location is determined by executing the
trained neural network with the selected centroid location.
The projected centroid location is the value of the hidden
units from the middle hidden layer computed when executing
the trained neural network.

In an operation 1622, the determined projected centroid
location is added to a graph such as a two-dimensional or a
three-dimension graph. For example, when two neurons are
selected for the middle layer, the centroid location for the
members of each composite cluster can be plotted in two
dimensions by extracting the features determined by the
middle layer of the trained neural network in operation 1622.
Referring to F1G. 24, six composite clusters, a first composite
cluster 2400, a second composite cluster 2402, a third com-
posite cluster 2404, a fourth composite cluster 2406, a fifth
composite cluster 2408, and a sixth composite cluster 2410,
are shown for illustration with the centroid location for each
member of the respective composite cluster plotted using the
values of the hidden units from the middle hidden layer. For
each centroid location, a first value of the hidden unit for a
first neuron of the two neurons is plotted on an x-axis, and a
second value of the hidden unit for a second neuron of the two
neurons is plotted on a y-axis. Of course, if three neurons are
used for the middle layer, a third value of the hidden unit for
a third neuron of the three neurons is plotted on a z-axis. The
clusters are separate and easily identifiable providing an addi-
tional interpretability and visualization of the clusters.

In an operation 1624, a determination is made concerning
whether or not there is another centroid location to process.
For example, each centroid location assigned to the compos-
ite clusters may be plotted on the graph. If there is another
centroid location to process, processing continues in opera-
tion 1618 with a next selected centroid location. If there is not
another observation to process, processing continues in
operation 220.

Referring again to FIG. 2, in operation 220, a fourteenth
indicator is received indicating new data to cluster with the
composite clusters. For example, the fourteenth indicator
indicates a location of a second data matrix. Similar to the first
indicator, the fourteenth indicator may further indicate that
only a portion of the data stored in the second data matrix be
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clustered as discussed previously. All or a subset of the obser-
vations may be assigned to the composite clusters.

In an operation 222, the new observations are assigned to
the composite clusters based on the composite centroid loca-
tions. As an example, the observations are assigned to clusters
associated with the composite centroid locations using
example operations described with reference to FIG. 17. The
order of presentation of the operations of FIG. 17 is not
intended to be limiting, and additional, fewer, or different
operations may be performed depending on the embodiment.

In an operation 1700, a first observation to assign to a
composite cluster is selected, for example, from the second
data matrix.

Similar to operation 1501, in an operation 1701, a fifteenth
indicator is received that indicates a cluster assignment algo-
rithm.

Similar to operation 1504, in an operation 1702, a distance
is computed between the values of the selected decorrelated
variables for the selected observation and each composite
centroid location.

In an operation 1704, a determination is made concerning
whether or not a nearest neighbors cluster assignment algo-
rithm is used based on the thirteenth indicator or the default
value for the cluster assignment algorithm. If the nearest
neighbors assignment method is used, processing continues
in an operation 1708. If the nearest neighbors cluster assign-
ment algorithm is not used, processing continues in an opera-
tion 1706.

Similar to operation 1506, in operation 1706, the observa-
tion is assigned to the composite cluster associated with a
minimum distance. Processing continues in an operation
1714.

In operation 1708, a probability of assigning the observa-
tion to each composite cluster is determined. For example, a
probability may be calculated for each composite cluster of
the composite clusters based on the percentage of observa-
tions assigned to each cluster in operation 214. As another
option, the probability may be determined by reading the
probability data stored in computer-readable medium 108 in
operation 216.

In an operation 1710, the probability calculated for each
composite cluster of the composite clusters is applied as a
weight to the distance to each composite cluster computed in
operation 1702 to compute a weighted distance to each com-
posite centroid location.

In an operation 1712, the observation is assigned to the
composite cluster associated with a minimum weighted dis-
tance to the composite centroid location.

Similar to operation 1518, in operation 1714, a determina-
tion is made concerning whether or not there is another obser-
vation to process. If there is another observation to process,
processing continues in operation 1702. If there is not another
observation to process, processing continues in operation
224.

Referring again to FIG. 2, in operation 224, the cluster data
determinations for the observations in either of data matrix
124 or the second data matrix may be used for further explor-
atory analysis of the data as understood by a person of skill in
the art.

Referring to FIG. 18, a block diagram of a cluster determi-
nation system 1800 is shown in accordance with an illustra-
tive embodiment. In anillustrative embodiment, cluster deter-
mination system 1800 may include distributed systems 132,
data transformation systems 1802, distributed control device
130, and a network 1801. Distributed systems 132 store dis-
tributed data. Data transformation systems 1802 access data
distributed to the distributed systems 132. Distributed control
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device 130 coordinates and controls access by data transfor-
mation systems 1802 to the data stored by the distributed
systems 132. One or more components of cluster determina-
tion system 1800 may support multithreading, as understood
by a person of skill in the art.

The components of cluster determination system 1800 may
be located in a single room or adjacent rooms, in a single
facility, and/or may be distributed geographically from one
another. Each of distributed systems 132, data transformation
systems 1802, and distributed control device 130 may be
composed of one or more discrete devices.

Network 1801 may include one or more networks of the
same or different types. Network 1801 can be any type of
wired and/or wireless public or private network including a
cellular network, a local area network, a wide area network
such as the Internet, etc. Network 1801 further may comprise
sub-networks and include any number of devices.

Data transformation systems 1802 can include any number
and type of computing devices that may be organized into
subnets. Data transformation device 100 is an example com-
puting device of data transformation systems 1802. The com-
puting devices of data transformation systems 1802 send and
receive communications through network 1801 to/from
another of the one or more computing devices of data trans-
formation systems 1802, to/from distributed systems 132,
and/or to/from distributed control device 130. The one or
more computing devices of data transformation systems 1802
may include computers of any form factor such as a smart
phone 1804, a desktop 1806, a laptop 1808, a personal digital
assistant, an integrated messaging device, a tablet computer,
etc. The one or more computing devices of data transforma-
tion systems 1802 may communicate using various transmis-
sion media that may be wired and/or wireless as understood
by those skilled in the art.

For illustration, FIG. 18 represents distributed systems 132
with a first server computer 1810, a second server computer
1812, a third server computer 1814, and a fourth server com-
puter 1816. Distributed systems 132 can include any number
and form factor of computing devices that may be organized
into subnets. The computing devices of distributed systems
132 send and receive communications through network 1801
to/from another of the one or more computing devices of
distributed systems 132, to/from distributed control device
130, and/or to/from data transformation systems 1802. The
one or more computing devices of distributed systems 132
may communicate using various transmission media that may
be wired and/or wireless as understood by those skilled in the
art.

In the illustrative embodiment, distributed control device
130 is represented as a server computing device though dis-
tributed control device 130 may include one or more comput-
ing devices of any form factor that may be organized into
subnets. Distributed control device 130 sends and receives
communications through network 1801 to/from distributed
systems 132 and/or to/from data transformation systems
1802. Distributed control device 130 may communicate using
various transmission media that may be wired and/or wireless
as understood by those skilled in the art.

Cluster determination system 1800 may be implemented as
agrid of computers with each computing device of distributed
systems 132 storing a portion of data matrix 124 in a cube, as
understood by a person of skill in the art. Cluster determina-
tion system 1800 may be implemented as a multi-node
Hadoop® cluster, as understood by a person of skill in the art.
Cluster determination system 1800 may use cloud computing
technologies, which support on-demand network access to a
shared pool of configurable computing resources (e.g., net-
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works, servers, storage, applications and services) that can be
rapidly provisioned and released with minimal management
effort or service provider interaction. Cluster determination
system 1800 may use SAS® High Performance Analytics
server. Cluster determination system 1800 may use the SAS
LASR™ Analytic Server to deliver statistical modeling and
machine learning capabilities in a highly interactive program-
ming environment, which may enable multiple users to con-
currently manage data, transform variables, perform explor-
atory analysis, and build and compare models. Cluster
determination system 1800 may use SAS In-Memory Statis-
tics for Hadoop® to read big data once and analyze it several
times by persisting it in-memory. Some systems may be of
other types and configurations.

Referring to FIG. 19, ablock diagram of distributed control
device 130 is shown in accordance with an example embodi-
ment. Distributed control device 130 may include a second
inputinterface 1902, a second output interface 1904, a second
communication interface 1906, a second non-transitory com-
puter-readable medium 1908, a second processor 1910, a
distributed control application 1912, and second data 1914.
Fewer, different, and additional components may be incorpo-
rated into distributed control device 130.

Second input interface 1902 provides the same or similar
functionality as that described with reference to input inter-
face 102 of data transformation device 100 though referring
to distributed control device 130. Second output interface
1904 provides the same or similar functionality as that
described with reference to output interface 104 of data trans-
formation device 100 though referring to distributed control
device 130. Second communication interface 1906 provides
the same or similar functionality as that described with ref-
erence to communication interface 106 of data transforma-
tion device 100 though referring to distributed control device
130. Data and messages may be transferred between distrib-
uted control device 130 and distributed systems 132 and/or
data transformation systems 1802 using second communica-
tion interface 1906. Second computer-readable medium 1908
provides the same or similar functionality as that described
with reference to computer-readable medium 108 of data
transformation device 100 though referring to distributed
controldevice 130. Second processor 1910 provides the same
or similar functionality as that described with reference to
processor 110 of data transformation device 100 though refer-
ring to distributed control device 130.

Distributed control application 1912 performs operations
associated with controlling access to the distributed data, with
performing one or more operations described with reference
to FIGS. 2, 3, 9, 10, 12, and 15-17, and/or with instructing
distributed systems 132 to perform one or more operations
described with reference to FIGS. 2, 3,9, 10, 12, and 15-17.

Some or all of the operations described herein may be
embodied in distributed control application 1912. The opera-
tions may be implemented using hardware, firmware, soft-
ware, or any combination of these methods. Referring to the
example embodiment of FIG. 19, distributed control applica-
tion 1912 is implemented in software (comprised of com-
puter-readable and/or computer-executable instructions)
stored in second computer-readable medium 1908 and acces-
sible by second processor 1910 for execution of the instruc-
tions that embody the operations of distributed control appli-
cation 1912. Distributed control application 1912 may be
written using one or more programming languages, assembly
languages, scripting languages, etc. Distributed control appli-
cation 1912 may be implemented as a Web application.
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Data 1914 may include data used by distributed control
application 1912 in support of clustering data in data matrix
124.

Referring to FIG. 20, a block diagram of a data node device
2000 is shown in accordance with an illustrative embodiment.
Data node device 2000 is an example computing device of
distributed systems 132. Data node device 2000 may include
a third input interface 2002, a third output interface 2004, a
third communication interface 2006, a third non-transitory
computer-readable medium 2008, a third processor 2010, a
local control application 2012, and a data subset 2014. Fewer,
different, and additional components may be incorporated
into data node device 2000.

Third input interface 2002 provides the same or similar
functionality as that described with reference to input inter-
face 102 of data transformation device 100 though referring
to data node device 2000. Third output interface 2004 pro-
vides the same or similar functionality as that described with
reference to output interface 104 of data transformation
device 100 though referring to data node device 2000. Third
communication interface 2006 provides the same or similar
functionality as that described with reference to communica-
tion interface 106 of data transformation device 100 though
referring to datanode device 2000. Data and messages may be
transferred between data node device 2000 and distributed
control device 130 and/or data transformation systems 1802
using third communication interface 2006. Third computer-
readable medium 2008 provides the same or similar function-
ality as that described with reference to computer-readable
medium 108 of data transformation device 100 though refer-
ring to data node device 2000. Third processor 2010 provides
the same or similar functionality as that described with ref-
erence to processor 110 of data transformation device 100
though referring to data node device 2000.

Local control application 2012 performs operations asso-
ciated with controlling access to the data stored in data subset
2014 and/or with executing one or more operations described
with reference to FIGS. 2,3,9,10,12, and 15-17. Some or all
of the operations described herein may be embodied in local
control application 2012. The operations may be imple-
mented using hardware, firmware, software, or any combina-
tion of these methods. Referring to the example embodiment
of FIG. 20, local control application 2012 is implemented in
software (comprised of computer-readable and/or computer-
executable instructions) stored in third computer-readable
medium 2008 and accessible by third processor 2010 for
execution of the instructions that embody the operations of
local control application 2012. Local control application
2012 may be written using one or more programming lan-
guages, assembly languages, scripting languages, etc. Local
control application 2012 may be implemented as a Web appli-
cation.

Data subset 2014 stores a portion of the data distributed
across distributed systems 132 with each computing device of
the distributed systems 132 storing a different portion of the
data. Distributed control device 130 further may store a por-
tion of the data.

A user may execute cluster data application 122 that inter-
acts with distributed control application 1912 by requesting
that distributed control device 130 perform one or more
operations described with reference to FIGS. 2, 3, 9, 10, 12,
and 15-17. Distributed control application 1912 triggers pro-
cessing by local control application 2012 executing at each
node device of the distributed systems 132 to perform one or
more operations described with reference to FIGS. 2, 3, 9, 10,
12, and 15-17. Any number of different users may be access-
ing the data at any given time.
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Various levels of integration between the components of
cluster determination system 1800 may be implemented
without limitation as understood by a person of skill in the art.
For example, local control application 2012 and distributed
control application 1912 may be the same or different appli-
cations or part of an integrated, distributed application sup-
porting some or all of the same or additional types of func-
tionality as described herein. As another example, cluster data
application 122 and distributed control application 1912 may
be the same or different applications or part of an integrated,
distributed application supporting some or all of the same or
additional types of functionality as described herein.

The various operations described with reference to FIGS.
2,3,9,10,12, and 15-17 provide a process for automatically
generating interpretable segmentation of raw data. A raw
dataset may be cleaned and preprocessed, relevant variables
selected, and observations grouped into clusters, all in auto-
matic fashion and in an unsupervised setting that is in the
absence of target variables. Example application areas
include market segmentation, recommendation systems,
monitoring equipment or conditions with sensors, image seg-
mentation, etc.

The word “illustrative” is used herein to mean serving as an
example, instance, or illustration. Any aspect or design
described herein as “illustrative” is not necessarily to be con-
strued as preferred or advantageous over other aspects or
designs. Further, for the purposes of this disclosure and unless
otherwise specified, “a” or “an” means “one or more”. Still
further, in the detailed description, using “and” or “or” is
intended to include “and/or” unless specifically indicated
otherwise. The illustrative embodiments may be imple-
mented as a method, apparatus, or article of manufacture
using standard programming and/or engineering techniques
to produce software, firmware, hardware, or any combination
thereof to control a computer to implement the disclosed
embodiments.

The foregoing description of illustrative embodiments of
the disclosed subject matter has been presented for purposes
of illustration and of description. It is not intended to be
exhaustive or to limit the disclosed subject matter to the
precise form disclosed, and modifications and variations are
possible in light of the above teachings or may be acquired
from practice of the disclosed subject matter. The embodi-
ments were chosen and described in order to explain the
principles of the disclosed subject matter and as practical
applications of the disclosed subject matter to enable one
skilled in the art to utilize the disclosed subject matter in
various embodiments and with various modifications as
suited to the particular use contemplated.

What is claimed is:

1. A non-transitory computer-readable medium having
stored thereon computer-readable instructions that when
executed by a computing device cause the computing device
to:

receive data that includes a plurality of observations with a

plurality of data points defined for each observation,
wherein each data point of the plurality of data points is
associated with a variable to define a plurality of vari-
ables;

repeatedly select a number of clusters into which to seg-

ment the received data by repeatedly executing a clus-
tering algorithm with the received data;

define a plurality of sets of clusters based on the repeated

execution of the clustering algorithm that resulted in the
selected number of clusters;

define a plurality of composite clusters based on the

defined plurality of sets of clusters; and
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assign the plurality of observations to the defined plurality
of composite clusters using the plurality of data points
defined for each observation.

2. The computer-readable medium of claim 1, wherein

selecting the number of clusters comprises:

defining a test number of clusters to create;

(a) determining centroid locations for the defined test num-
ber of clusters using the clustering algorithm and the
received data to define test clusters;

(b) creating a reference distribution that includes a plurality
of reference data points, wherein the plurality of refer-
ence data points are within a boundary defined for the
received data;

(c) determining second centroid locations for the defined
test number of clusters using the clustering algorithm
and the created reference distribution to define second
test clusters;

(d) computing a first residual sum of squares for the defined
test clusters;

(e) computing a second residual sum of squares for the
defined second test clusters;

(1) computing a gap statistic for the defined test number of
clusters based on a comparison between the computed
first residual sum of squares and the computed second
residual sum of squares;

(g) repeating (a) to (f) with a next test number of clusters to
create as the defined test number of clusters;

determining an estimated best number of clusters for the
received data by comparing the gap statistic computed
for each iteration of (d); and

selecting the number of clusters as the determined esti-
mated best number of clusters.

3. The computer-readable medium of claim 2, wherein the
boundary includes a cluster boundary for each of the defined
test clusters and the plurality of reference data points are
within the cluster boundary of at least one cluster of the
defined test clusters.

4. The computer-readable medium of claim 2, wherein (b)
and (c) are repeated a plurality of times.

5. The computer-readable medium of claim 2, wherein the
test number of clusters to create is defined as a minimum
number of clusters in a range of numbers of clusters to evalu-
ate, and the next number of clusters is defined in (g) by
incrementing the defined test number of clusters for each
iteration of (g).

6. The computer-readable medium of claim 5, wherein (g)
is repeated until the next number of clusters is greater than a
maximum number of clusters in the range of numbers of
clusters to evaluate.

7. The computer-readable medium of claim 2, wherein the
estimated best number of clusters is determined as the defined
number of clusters associated with a maximum value of the
computed gap statistic or with a first local maxima value of
the computed gap statistic.

8. The computer-readable medium of claim 1, wherein
repeatedly selecting the number of clusters comprises:

randomly selecting a first subset of the plurality of vari-
ables;

selecting a first number of clusters into which to segment
the received data by repeatedly executing the clustering
algorithm with the received data using only the data
points associated with the randomly selected first subset
of the plurality of variables;

randomly selecting a second subset of the plurality of vari-
ables that is different from the first subset of the plurality
of variables; and
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selecting a second number of clusters into which to seg-
ment the received data by repeatedly executing the clus-
tering algorithm with the received data using only the
data points associated with the randomly selected sec-
ond subset of the plurality of variables.

9. The computer-readable medium of claim 8, wherein the
random selection of the second subset of the plurality of
variables and the selection of the second number of clusters is
repeated a predefined number of times.

10. The computer-readable medium of claim 9, wherein the
number of clusters is selected from the selected first number
of clusters and the repeated selections of the second number
of clusters.

11. The computer-readable medium of claim 1, wherein the
computer-readable instructions further cause the computing
device to select a plurality of decorrelated variables from the
plurality of variables.

12. The computer-readable medium of claim 11, wherein
selecting the plurality of decorrelated variables comprises:

computing a correlation value between each of the plurality

of variables to define a correlation matrix;

comparing a binary threshold value to each correlation

value to define a binary similarity matrix from the
defined correlation matrix;
defining an undirected graph comprising a subgraph that
includes one or more connected nodes, wherein the
undirected graph is defined based on the defined binary
similarity matrix, wherein the undirected graph stores
connectivity information for the plurality of variables,
wherein each node of the subgraph is pairwise associ-
ated with a variable of the plurality of variables;

selecting a least connected node from the defined undi-
rected graph based on the connectivity information;

removing the selected least connected node from the undi-
rected graph; and

outputting variables pairwise associated with remaining

nodes of the undirected graph as the selected decorre-
lated variables when a stop criterion is satisfied.

13. The computer-readable medium of claim 12, wherein
selecting the least connected node and removing the selected
least connected node are repeated a plurality of times.

14. The computer-readable medium of claim 12, wherein
the least connected node is selected randomly from a plurality
of least connected nodes.

15. The computer-readable medium of claim 14, wherein
the random selection comprises comparing a randomly deter-
mined value to a predefined drop percentage value.

16. The computer-readable medium of claim 12, wherein
the connectivity information is updated after the selected least
connected node is removed.

17. The computer-readable medium of claim 16, wherein
selecting the least connected node and removing the selected
least connected node are repeated after updating the connec-
tivity information.

18. The computer-readable medium of claim 12, wherein
the connectivity information comprises a connectivity
counter value defined for each node in the undirected graph,
wherein the connectivity counter value indicates a number of
connections between the respective node and the remaining
nodes.

19. The computer-readable medium of claim 12, wherein
the stop criterion is satisfied when the number of remaining
nodes equals a predefined minimum number of nodes.

20. The computer-readable medium of claim 12, wherein
the stop criterion is satisfied when the number of remaining
nodes equals a predefined percentage of one or more con-
nected nodes included in the defined undirected graph.
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21. The computer-readable medium of claim 12, wherein
the defined undirected graph includes a plurality of sub-
graphs, and the stop criterion is satisfied when the plurality of
subgraphs each include a single node.

22. The computer-readable medium of claim 1, wherein
defining the plurality of composite clusters based on the
defined plurality of sets of clusters comprises:

initializing composite cluster centroid locations for each

composite cluster of the composite clusters pairwise
with cluster centroid locations of a first set of clusters of
the defined plurality of sets of clusters;

selecting a second set of clusters of the defined plurality of

sets of clusters;

selecting second cluster centroid locations of the selected

second set of clusters;

computing distances pairwise between each pairing of the

selected second cluster centroid locations and the com-
posite cluster centroid locations;

selecting an optimum pairing based on a minimum dis-

tance of the computed distances; and

updating the composite cluster centroid locations based on

the selected second cluster centroid locations and the
selected optimum pairing.

23. The computer-readable medium of claim 22, wherein
defining the plurality of composite clusters based on the
defined plurality of sets of clusters further comprises repeat-
ing, for each of the defined plurality of sets of clusters as the
selected second set of clusters, the selection of the second
cluster centroid locations, the computation of the distances
pairwise, the selection of the optimum pairing, and the update
of the composite cluster centroid locations.

24. The computer-readable medium of claim 23, wherein
defining the plurality of composite clusters based on the
defined plurality of sets of clusters further comprises updat-
ing cluster assignments for the plurality of observations based
on the selected optimum pairing, wherein the update of the
cluster assignments is repeated for each of the defined plural-
ity of sets of clusters as the selected second set of clusters.

25. The computer-readable medium of claim 24, wherein
defining the plurality of composite clusters based on the
defined plurality of sets of clusters further comprises com-
puting a probability of assigning each observation of the
plurality of observations to each composite cluster of the
composite clusters based on the updated cluster assignments.

26. The computer-readable medium of claim 25, wherein
assigning an observation of the plurality of observations to
the defined plurality of composite clusters is based on the
probability of assigning the observation to each composite
cluster.

27. The computer-readable medium of claim 23, wherein,
after the repeating for each of the defined plurality of sets of
clusters as the selected second set of clusters, assigning the
plurality of observations to the defined plurality of composite
clusters comprises, for each observation of the plurality of
observations:

computing cluster distances between the plurality of data

points of an observation and each of the composite clus-
ter centroid locations;

selecting a minimum distance of the computed cluster dis-

tances;

selecting a minimum composite cluster associated with the

selected minimum distance; and

assigning the observation to the selected minimum com-

posite cluster.

28. The computer-readable medium of claim 23, wherein
the computer-readable instructions further cause the comput-
ing device to:



US 9,202,178 B2

31

store the selected second cluster centroid locations pair-
wise in association with each composite cluster of the
composite clusters based on the selected optimum pair-
ing before the repeating for each of the defined plurality
of sets of clusters as the selected second set of clusters;
repeating the storing of the selected second cluster centroid
locations for each of the defined plurality of sets of
clusters as the selected second set of clusters;
wherein, after the repeating for each of the defined plurality
of sets of clusters as the selected second set of clusters,
the computer-readable instructions further cause the
computing device to:
create noised centroid location data from the stored
selected second cluster centroid locations;
train a multi-layer neural network with the created noised
centroid location data;
determine a projected centroid location as values of hidden
units of a middle layer of the trained multi-layer neural
network; and
output the determined, projected centroid location in a
graph.
29. A computing device comprising:
a processor; and
a non-transitory computer-readable medium operably
coupled to the processor, the computer-readable
medium having computer-readable instructions stored
thereon that, when executed by the processor, cause the
computing device to
receive data that includes a plurality of observations
with a plurality of data points defined for each obser-
vation, wherein each data point of the plurality of data
points is associated with a variable to define a plural-
ity of variables;
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repeatedly select a number of clusters into which to
segment the received data by repeatedly executing a
clustering algorithm with the received data;

define a plurality of sets of clusters based on the repeated
execution of the clustering algorithm that resulted in
the selected number of clusters;

define a plurality of composite clusters based on the
defined plurality of sets of clusters; and

assign the plurality of observations to the defined plu-
rality of composite clusters using the plurality of data
points defined for each observation.

30. A method of automatically clustering a dataset, the

method comprising:

receiving data that includes a plurality of observations with
a plurality of data points defined for each observation,
wherein each data point of the plurality of data points is
associated with a variable to define a plurality of vari-
ables;

repeatedly selecting, by a computing device, a number of
clusters into which to segment the received data by
repeatedly executing a clustering algorithm with the
received data;

defining, by the computing device, a plurality of sets of
clusters based on the repeated execution of the clustering
algorithm that resulted in the selected number of clus-
ters;

defining, by the computing device, a plurality of composite
clusters based on the defined plurality of sets of clusters;
and

assigning, by the computing device, the plurality of obser-
vations to the defined plurality of composite clusters
using the plurality of data points defined for each obser-
vation.



